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1.0 ABSTRACT

Vortex flows produced by submersibles typically unfavorably influence key figures of merit

such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor ef-

ficiencyfoody drag. Sources of such organized, primarily longitudinal, vorticity include the basic

body (nose and sides) and appendages (both base/intersection and tip regions) such as the fair-

water, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different

vortex control approaches are available (a) deintensification of the amplitude and/or organization

of the vortex during its initiation process, and (b) downstream "vortex disablement." Vortex

control techniques applicable to the initiation region (deintensification approach) include trans-

verse pressure gradient minimization via altered body cross section, appendage dillets, fillets,

and sweep, and various appendage tip and spanload treatments along with use of active con-

trois to minimize control surface size and motions. Vortex disablement can be accomplished

either via use of control vortices (which can also be used to "steer" the vortices off-board),

direct unwinding, inducement of vortex "bursting," or segmentation/tailoring for enhanced dis-

sipation. Paper includes submersible-applicable vortex control technology derived from various

aeronautical applications such as mitigation of the wing wake vortex hazard and fighter aircraft

maneuverability at high angle of attack as well as the status of vortex effects upon, and miti-



gationof, nonlinear congol forces on submersibles. Paper concludes with specific suggestions

for submersible-applicable vortex control techniques.

2.0 INTRODUCTION

"The security of our nation and the balance of world power depend on the submarine" (ref. 1).

This security is dependent, first and foremost, upon submarine acoustic and non-acoustic stealth.

Recent advances in the platform quieting area (e.g., ref. 2) have reduced the passive acoustic

detection ranges to the point where other signatures, including various nonacoustic phenomena,

become of concern and interest (e.g., refs. 3-5), particularly for the "shallow water" case. Many

of these "unsound" phenomena, such as Bioluminescence, IR, internal waves, "wakes and scars,"

etc., arc either related to, or exacerbated by, organized longitudinal vorticity. These vorticity

fields arc produced by the platform at multiple sites, interact in the near field, and then undergo

subsequent far-field interaction with the doubly stratiiicd (thermal, salinity) sheared and turbulent

water column (refs. 6-14). Depending upon platform depth, strength and configuration of these

vorticity fields, and conditions in the ambient water column, the resulting disturbances can

possibly bc detected by, for example, space/air/ship borne IR, optical, radar, microwave, or laser

sensors.

In addition to the nonacoustic detection issues, platform generated organized vorticity

production and interaction can also severely impact other important figures of merit such as

controllability and maneuverability (rcf. 6, 15), passive acoustic signature, body drag, and

propulsor efficiency and vibration. Platform sources of organizexi longitudinal vorticity include

the body (nose and sides), various appendages (both bases/intersections and tips) such as the



fairwater, fairwateror bow planes, and rear control surfaces and propulsor components including

stator-generated and propeller tip vortices. It is therefore obvious that vortex "control" would

be beneficial to several measures of platform effectiveness and efficiency. Such control can be

applied/exercised either in the vortex initiation process or in the near field interaction regions

downstream of initiation. The former is probably the approach of choice while the latter is

a particularly useful ploy/fix for existing problems and/or residual vorticity remaining after

initiation region treatment. Historically, research in the vortex control area has focused primarily

upon various aeronautical applications such as wind-tunnel flow management (ref. 16), wing tip

vortex control for mitigation of the wake vortex hazard (e.g., ref. 17), drag-due-to-lift reduction

and stealth, and, more recently, control of body vortices for improved maneuverability (refs. 18

and 19). By and large, this technology has not yet been extensively applied to submersibles.

A control issue is the requirement for the control vs. _ of the vortex controlled, i.e.,

for acoustic stealth and maneuverability/control surface effectiveness, one can either "steer" the

vortex away or alter the inner core, whereas for non-acoustic far field issues the large-scale

circulation should, in general, be diminished.

The purpose of the present paper is to review and discuss the status of the various vortex

control options available to the platform designer and to suggest approaches which appear

feasible on the basis of submarine performance issues including nonacoustic and acoustic stealth,

controls optimization, vibration minimization, improved propulsor efficiency, and minimal drag

increase/drag reduction, considering the operational range of vehicle attitude/motions. Emphasis

is placed upon control in the vorticity origination and near field interaction regions. The far field



interactionswith the water column arc not discussedherein,although an obvious controlploy

in thatregard isto operatein regionsof strongambient turbulence(ref.20, 21). The submarine

farfieldvortexwake----ambientflow interactionproblem has been the subjectof intenseresearch

for years.However, the submarine body/appendage vortexproduction and near fieldinteraction

region has not yet bccn adequately addressed from a vortex controlviewpoint. Much of the

far fieldwork has focused upon analysisof vorticalfieldsproduced by currentdesigns rather

than attemptsto mitigate/controlbody-generated vorticity.Other naval applicationsof vorticity

control include wake minimization for surface ship stealth,bilge vortex reduction for drag

and propulsor optimization(rcf.22), and sonar array self-noisemitigationas well as acoustic

treatmentsfor machinery (internalflows).

3.0 OVERVIEW OF LONGITUDINAL VORTEX PHYSICS AND CONTROL ISSUES

At the outsetof thisdiscussionitshould bc noted that,for submarines,thereare two rather

differentproblems to be addrcssod in relationto vortex control.

First,thereis the problem of vorticityproduction by the submarine while itisoperatingin

a very stealthymanner. In thiscase controlactionshould be a minimum and body angles must

be kept as small as possible. For thismode of operation,the submarine designer should be

able to use allthe power of the methods of linearhydrodynamics and boundary-layertheory to

achieve a design mating minimum vorticity.If some aspectof the flow around a submarine in

thisconditionmust be treatedby nonlinearinteractivemethods, a fundamental design mistake

has been made.

Second, thereisvorticityproduction when the submarine must be maneuvered. In thiscase,



strong trailing vorticity patterns must be generated for them is no force without there being a

cross-stream moment of trailing vorticity. When treating the effects of such vorticity, especially

the mitigation of such effects, it is almost always necessary to consider the nonlinear interaction of

such vorticity. A knowledge of these nonlinear interactions is essential to the submarine designer

ff he is to understand controllability and control effectiveness or he is to design vehicles that do

not produce bothersome organized vorticity as a result of desired control forces and moments.

Detailed treatments of vorticity dynamics (refs. 23-27, 21a) indicate that the dominant source

of longitudinal vorticity production for submersibles is transverse pressure gradients. Such gra-

dients occur, for example, about bodies at incidence or yaw and near the intersection and tip

regions of appendages (ref. 28). Therefore the zeroth-order approach to longitudinal vortex

control is to minimize these transverse pressure gradients and/or institute 3-D separated flow

control techniques. For the body itself, such a vortex control approach (minimization of trans-

verse pressure gradients) can be accomplished by (a) altering basic body geometry, (b) ensuring

continuous body curvature (continuous 2nd derivatives) (ref. 29), and (c) minimizing body mo-

tions, via, for example, use of active control systems to account for variations in body buoyancy

along the "flight path." Similar approaches can also be employed for appendages, i.e., fillets

and dillets in intersection regions (alter basic geometry) and use of active controls to minimize

required control surface motions. Probably the most straightforward method of vortex control

for appendages is to simply eliminate (or at least minimize) the size of the protuberance, e.g.,

by folding the device into the body when not in use. This latter approach is used by various

species of nektons (refs. 30-32). Elimination of the submarine fairwater has been suggested



probably ever since one was first employed, and this may even be feasible in the future due to

the development of deployable off-board sensors. Also, use of thrust vectoring for control may

allow control surface size reductions.

Once the longitudinal vorticity is produced, its subsequent near field behavior is influenced

by its turbulence structure and interactions with body flow field elements (pressure gradients,

the propulsor), adjacent surfaces, and/or other vortical entities. The turbulence structure of

longitudinal vortices is affected to first order by the flow-induced curvature within the vortex

which stabilizes the fluctuation fields in the inner portion (rcfs. 6, 7, 33, and 34) leaving in

many cases an annular ring of turbulence. This stabilization can be mitigated by local turbulence

production within the inner region by radial gradients of the axial flow and therefore the near field

development of longitudinal organized vortical entities is a function of the detailed initial mean

3--_..DDvorticity structure of the vortex, which in turn is dictated by the body/appendage/propulsor

geometry and motions.

Conventional wisdom (e.g., ref. 35) indicates that longitudinal vortex dynamics are not

sensitive to Reynolds number. This is based primarily upon an observed Reynolds number

insensitivity of (pressure-gradient-induced) vortex bursting in the lee-surface flow of delta wings.

Detailed vortex development and thus local characteristics can, however, by quite sensitive

to vortex Reynolds number (rcfs. 36-44), and there is a significant shortfall between full-

scale submarine Reynolds numbers and those attainable in most (water and air) test facilities.

Facilities with Reynolds numbers approaching those of deployed platforms include (a) NASA

LaRC National Transonic Facility (NTF) (cryogenic nitrogen), (b) sub (but large) scale pop-
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up bodies and, perhaps in the future,a liquidhelium (1)tunnel currentlyunder study at the

Universityof Oregon by Prof.RussellDonneUy. In the absence of testsin thesefacilities,and

in lightof the currentuncertaintiesin turbulencemodeling fororganiz_ vorticalflows (ref.45),

diagnosisand treatmentof longitudinalvorticeson submarines isan inherentlyuncertainbusiness

in view of the known (and largelyunknown) Reynolds number sensitivitiesinvolved. In fact,

thisReynolds number shortfallwas atleastpartiallyresponsibleforthe difficultieswhich NASA

encountered in the '70'sin extending vortex controlapproaches from ground facilitiesto flight

tests(on 747 aircraft)in what isprobably the largestvortex controlprogram ever undertaken,

attempts to mitigate the lift-induced wake vortex hazard to following light aircraft produced by

the introduction of "heavy" (DC-10, L-1011, 747) transport aircraft.

There are four disparate approaches to longitudinal vortex control for submersibles: (1) reduce

initial vortex production/strength via minimization of transverse pressure gradients, (2) coun-

teract/annihilate the organized vortex motion by producing vorticity of the opposite sign, ei-

ther in the initiation region or downstream which can be accomplished by blowing, strakes or

moving surfaces, (3) attempt to spreadReduce the intensity of the organized vorticity via seg-

mented/tailored generation, turbulence interactions, or excitation of instabilities/bursting, and

(4) generate/utilize "control vortices" to steer the organized vortical motion, away from interac-

tions with (a) platform surfaces (for vehicle control/acoustic stealth) and (b) the air-sea interface

(for non-acoustic stealth). The balance of the paper will discuss implementation approaches of

these various techniques for the basic body, appendage intersection regions, and tip flows, as

well as off-board but near field vortex interactions and control.



4.0 BODY VORTEX INITIATION AND CONTROL

As stated in the previous section, angles of attack or sideslip on nominally axisymmetric

submarine configurations induce transverse pressure gradients which, for surprisingly small

angles, can produce organized longitudinal vorticity (ref. 46). It was also pointed out that

the zeroth-order vortex control approaches for the body generated vortex flows include body

shaping to minimize transverse pressure gradients (particularly beneficial if the prevalent body

motions occur in a particular direction), use of continuous curvature surfaces to minimize pressure

gradients, utilization of 3-D flow separation control techniques, and minimization of body

motions via automatic control systems. Such body shaping could be either implemented as

fixed changes to the body cross section(s) or via movable (e.g., inflatable) localized panels

analogous to the "mission-adaptive" wing approach in aeronautics. For the low to moderable

incidence case (e.g., __.<0(20 °) (ref. 47)), direct control during vortex initiation is possible using

suction (ref. 48) injection (refs. 49-52) and perhaps moving surfaces. The key problem for such

"active" submarine body vortex control approaches as local body (Re)-shaping, injection, moving

surface, etc., is the variation in vortex initiation locus induced by variations in body pitch-yaw

motions. An alternate control technique, albeit one with an innate drag penalty, is the use of

"control" vortices or surface interactions to cancel, via adjacent (same sign of vorticity) or direct

(opposite sign of vorticity) "unwinding," of the developing body vorticity (refs. 53-58). The

basic approach is to produce and introduce vorticity with sign either opposite or equal to that

produced by the body (depending upon proximity of the control and controlled vortical systems).

Such control vortices could be generated by deploying either conventional vortex generators or

use of water jets. This technique also has the problems associated with variability in body



vortex initiationlocation(afunctionof detailedbody motion) and introducesadditionaldrag and

other force vectorsintoan alreadymessy problem. However, ifthe body vortexmust be dealt

with/altered,such a technique does constitutean alternativeapproach.

Characteristics of (mainly missile) body vortical systems are discussed and documented in,

for example, references. 43, 46, 47, and 59-72 with rcf. 47 being probably the most useful

in the present regard (provides vortex location, etc.). Additional information regarding vortex

characteristics and control techniques (strakes, blowing, etc.) for high angle of attack/yaw, where

asymmetric body vortices form and induce "side forces" is given in references 73-82.

In summary, submersible body vortices, induced by body pitch/yaw motions, are controllable

via minimization of such body motions (at cruise) through use of active controls, mitigation of

local transverse pressure gradients by geometrical modifications, and blowing to reduce the initial

vortex strength and strake or water jet generation of "control vorticity" to "unwind" the vortical

motion. The directional variability of submarine body motions necessitates that such systems be

active, dispersed, rapidly deployable, and triggered by distributed sensors. Such vortex control

systems of sensors and actuators or effectors could be compatible with double hull submarine

construction. These approaches might be aided by provision of "discrete" body discontinuities

to aid body vortex localization and perhaps provide vortex segmentation and/or tailoring for

enhanced turbulence productivity.

5.0 VORTEX CONTROL FOR APPENDAGE INTERSECTION REGIONS

Considerable numerical and experimental research conducted over the last 10 years has

carried us beyond the status of protuberance intersection flow knowledge circa 1977 when "the



formation, size, strength, and extent of the vortices and the mechanisms of interaction among

the vortices in front and around the obstacle arc virtually unknown" (ref. 83). Intersection

flow physics is of concern in many applications including wind engine.ring and boundary-

layer meteorology (refs. 83-85), ocean engine.ring (tel 86), gas turbine and other rotating

machinery design (ref. 87), heat exchangers and wing/empennage body intersections as well

as for submarine-appendage (sail, control surfaces) intersections. The basic flow structure

produced by intersection regions has now be.n studied in considerable detail (refs. 83-104 and

references cited therein). The essential flow feature is a horseshoe vortex which forms in the

nose-to-midchord region and trails downstream, in some cases for "hundreds of boundary-layer

thicknesses" (ref. 88). This vortex is formed by the transverse pressure gradients induced by

the obstacle/appendage flow field. The trailing intersection-induced longitudinal vorticity for a

symmetric slender appendage can consist of either symmetric or asymmetric vortex systems,

depending upon flow incidence. Also, the main vortex usually engenders subsidiary vortex

systems which can dynamically interact, the number and relative steadiness of such protuberance-

induced nested vortex systems is a function of the protuberance geometry, Reynolds number, etc.

Downstream the asymmetric vortex systems suffer less mutual annihilation and arc consequently

longer-lived. Contemporary CFD is capable of resolving the juncture problem numerically

and providing estimates of the general flow phenomena (refs. 105-110). Although the detailed

transition and turbulence physics required for accurate predictions are not yet in hand, these

codes can be, and have be.n (e.g., rcfs. 107-109), used to investigate/optimize vortex control

approaches for juncture regions.
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Sincethe vorticity to be controlled is produced by the appendage pressure fields, the most

obvious, and among the most effective, appendage vortex control technique is to simply reduce

the magnitude and extent of the basic pertubation, usually by reducing the appendage leading-

edge diameter (refs. 111-117) or employing appendage leading-edge sweep (refs. 107 and 109)

or a combination thereof. These are very powerful approaches and result in drastic changes in

vortex strength.

Another popular appendage vortex control technique is the use of fillets, which decrease

the local pressure gradients without (generally) altering the overall appendage-imposed pressure

change. Fillets have long been used on an empirical cut-and-try basis to reduce appendage

intersection drag. Much of this early work is summarized in Homer's book (ref. 118) and

indicates that increasing the longitudinal fillet radius is favorable (for drag reduction) as is

extending the fillet beyond the trailing edge of the appendage (refs. 118 and 119). More recent

work regarding fillets (refs. 107, 108, 120-129) has included detailed flow field studies aimed

at determining the influence of such juncture "fairings" upon vortex generation and behavior,

i.e., vortex control. This work indicates that even simplex leading- and trailing-edge fairings

or fillets can provide significant mitigation of vortex strength and size. The fillet must, for

the submersible case, be carded around the leading edge to account for operational variations

in flow incidence. Also, reference 107 indicates that a fillet radius on the order of 3 times the

leading-edge diameter is required to achieve a sizable effect on the vortex, which may explain the

adverse effects found in reference 125 for a much smaller fillet (radius on the order of one-half

the leading-edge diameter). There are still no general design guidelines for fillet optimization

11



in a given situation. CFD techniques allow analysis of a given shape but the optimization

strategy has not yet been worked out, and the results would probably vary somewhat depending

upon the ordering of the various figures of merit (non-acoustic/platform control/acoustics/drag,

etc.), as well as whether the flow orientation changes operationally (as it does in a submarine).

Of considerable interest are the results of reference 129 which indicate that even a triangular

flat ramp in the intersection is of great benefit in vortex mitigation (perhaps due partially to

production of "negative" vorticity at the edges of the ramp).

Two additional intersection vortex control techniques have been recently proffered. The

first is the application of direct "unwinding" via impingement of the developed horseshoe

vortex flow upon a set of vortex generators suitably orientated to cancel the incident vorticity

(ref. 130). This is essentially the application of the work of references 53 and 54 to the

intersection vortex problem, and while the technique works well, the operational variability

of flow incidence/resultant vortex location probably precludes its use. The devices could be

modified to generate adjacent "like sign" vorticity to achieve mutual vortex mitigation (ref. 54).

This would provide a somewhat wider operational flow incidence envelope but probably not

wide enough for successful application to submersibles.

The other "new" approach to the design of intersections comes under the heading of

generalized "dillet" technology. Since the primary sources of the trailing vorticity seen in

necklace vortices are the athwartship pressure gradients induced on the submarine hull by the

application of the sail, one can shape the hull surface in the vicinity of the sail so as so eliminate

these induced pressures. The required shape may be calculated using the negative image method.
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Theshapethat results requires a depression or dent in the vicinity of the root of the sail rather than

a flu or "fillet." Hence the term "dfllet." At the present time, the methods used to design optimum

intersections are in their infancy. One can calculate using the methods already developed the

changes in interference drag that result from small changes of shape in the interaction region. Yet

to be developed is an inverse design method that would allow a complete intersection shape to

be designed to minimize integral measures of performance (for example, drag). The basic ideas

behind diUet technology are ascribed to J. E. Yates and C. duP Donaldson (e.g., ref. 26) and, in

the tests made so far, elimination of a major portion of the longitudinal vorticity associated with

a thick airfoil mounted on a surface has been demonstrated. In regard to interpreting necklace

vortex experiments, it should be kept in mind that the conventional necklace vortex is seen

because the flow separates. If this separation had been prevented (by sucking off the boundary

layer, for example), the longitudinal vorticity would still be produced because the lateral pressure

gradients would still exist. This vorticity would not be observed directly unless the boundary

layer separated downstream of the intersection, but it is there nevertheless. This is much the

same as the vorticity due to lift on a wing which is not observed directly until the flow leaves

the surface of the wing.

In summary, vortex control for appendage juncture regions is probably best accomplished

by a combination of techniques which reduce the vortex strength in the initiation region.

These include appendage leading-edge radius reduction in the intersection region (consistent

with overall appendage function), appendage leading-edge sweep, some leading-edge filleting

if required, and dilleting along the sides of the protuberance. As a matter of interest, most
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appendage intersections in nature such as the dorsal fin-body attachment region on sharks are

well-filleted (large radius fillet on front and sides) and generally swept with a small leading-edge

radius.

6.0 TIP VORTEX INITIATION AND CONTROL

The crucial initial question concerning tip vortex strength/structure, etc., is the loading level

and distribution over the associated appendage. Tip flows associated with appendages which are

not carrying lift are essentially 3-D momentum wakes, possibly containing small-scale embedded

longitudinal vorticity engende/e.d by GiSt'tier-like wake instabilities (ref. 131). The tip vortex

control problem considered herein is associated with tip flows on lift-carrying appendages. For

submarines this corresponds to the sail/bow planes (when activated/loaded), the sail itself (when

the boat is maneuvering/sail is at angle of attack), the rear control surfaces (when loaded) and

the propulsor tips. An obvious zeroth order vortex control technique for tip flows is to minimize

the lift on the associated appendage, e.g., via active controls, greater solidity, larger diameter

propellers, and sail profiles designed with reduced lift coefficient. The first order approach is

to use an increased aspect ratio which for the same lift force reduces the vortex strength via a

reduced lift coefficient and increased span.

The vast bulk of the research regarding tip vortex diagnosis and treatment/control stems from

attempts to control the strong and highly organized tip vortices associated with large aircraft in

the terminal area which can constitute a serious hazard to following lighter aircraft and thus

limit airport productivity (ref. 132). In general this aircraft wing vortex problem differs from

submarine tip flows in that during the critical aircraft takeoff and landing periods much of the
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lift is carried on part span flaps and therefore the vortex (near wing) wake is actually a complex

system of flap, wing tip, and other lesser vortex systems (whose interactions can actually be used

for vortex control, as will be discussed later herein). In the submarine case the control surfaces,

at least thus far, usually employ either full-span flaps or are all-movable surfaces and therefore

the tip vortex is the major vorticity element (per appendage), as the appendage/body intersection

vortices are generally contained within the body boundary layer.

Excellent summaries regarding wing tip/flap vortex flow physics are available, for example,

in references 6 and 133-136. CFD is beginning to seriously address viscous details of the tip

vortex formation problem (e.g., ref. 137), enabled by the capacity of the Cray 2 class machines.

Detailed summaries of the extensive research aimed at tip vortex control for wake vortex hazard

reduction on aircraft are available in references 6 and 138. The techniques which, to various

extents, "work," i.e., reduce the strength, diffuse, the core, etc., of tip vortices are grouped herein

under the headings of (a) mass injection, (b) tip treatments, and (c) tailored vorticity production.

Techniques which involve vortex--vortex interactions are addressed in the next section.

The mass injection technique is, in reality, four disparate approaches depending upon the

direction of injection. Direct spanwise tip injection (refs. 139-142) provides an effective increase

in span, reduced drag due to lift, and diminished tip vorticity, at least partially due to vortex

segmentation (ref. 140). Downward directed tip injection (refs. 143 and associated patents,

refs. 144-146) tends to directly counter the wing tip upwash which rolls up into the wing-tip

vortex. Results in reference 143 indicates a sizable (0(40%)) reduction in vortex core strength

with a concomitant increase in lift-to-drag ratio. For submarine applications the "lift vector" can

15



b¢ in either direction depending upon body motions/rnquired control power and therefore a dual

action injection system would be required.

The third and fourth tip mass addition vortex cont/'ol techniques are related in that both

attempt to produce increased turbulence levels within the vortex to aid in vortex disper-

sion/dissipation. The first such technique is to direct the tip injection axially, either up or

downstream to create a wake, or jet, respectively in the axial velocity component of the tip

vortex. This generates a mean shear in the axial flow which can greatly augment total turbu-

lence production in the vortex. This injection can be accomplished either by an auxiliary system

(refs. 147-156) or directly by locating engines in the wing tip region (e.g., refs. 157-158). This

is a powerful technique and has yielded consistently good results both as to vortex mitigation

and impact (or lack thereof) upon basic wing flow. The fourth tip mass injection technique is to

utilize tip jets at various orientations to "mix up the flow" and thereby augment/create additional

turbulence. This is a less structured approach, but evidently fairly effective in promoting vortex

dissipation. Various and diverse tip vortex systems are observed, i.e., vortex segmentation oc-

curs as well as increased turbulence levels (some of the latter may, in fact, be due to dynamic

multiple vortex motions/interactions) (refs. 159-163).

Still another tip vortex mitigation approach involves altering the wing (or appendage)

spanload distribution to avoid formation of a concentrated vortex core (refs. 164-166), i.e.,

tailored vorticity production. This is accomplished via a saw-tooth or alternating spanwise

variation of wing circulation. This approach has not been checked out experimentally to any

major extent. Finally, there is a plethora of tip region "gadgets" which have been tried based

16



upon severalcontrolapproaches. These include (a)blades (fixedor rotating)insertedintothe

(angled)tipvortexflow torecoverthrust(fixed,mr. 167) or power (rotating,refs.168, 169) from

the tipflow and therebypartiallydisablethe tipvortex,(b)fixedtipregionfences (refs.170, 171)

to altarthe vortexflow in a manner analogous to a honeycomb (seeref.16),(c) an "OGEE" tip

(ref.172), and (d)porous (distributedpassive bleed) tips(refs.173-175). All of these devices

"work" to some degree.

In summary, the bulk of the available vortex control technology and invention has historically

centered upon the (aerodynamic) requirement to reduce the wing tip vortex hazard. The

number of approaches which "work" is large and the issue of which one to apply to the

submarine appendage tip vortex control problem can only be addressed in the context of which

appendage/blade is being treated and for what reason (nonacoustics, acoustics, drag, etc.) in that a

fix for one purpose may be detrimental to other figures of merit. The approaches discussed herein

are relatively immature and considerable research is required, probably on several competing

devices/approaches, before a "best" method is arrived at. However, many of these approaches

are viable, what remains is to pick and choose and evaluate for the specific application (bearing

in mind the previous comments herein concerning (largely unknown) Reynolds number effects).

Axial injection, perhaps using the propulsion plant cooling water flow which must be ejected

overboard in any event, does appear to the present authors to be particularly intriguing.

7.0 NEAR FIELD VORTEX CONTROL

Previous sections of the present report have considered various sources of organized vorticity

(body, intersection regions, tip flows) and associated local control techniques. This section
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addresses vortex control possibilities subsequent to vortex generation but still within the "near

field" (before extensive interaction with the water column). Probably the most prevalent (perhaps

cvcn inadvertent) deployed vortex control technique for submersibles is to either allow, or tailor

the flow to ensure, vortical flow interaction with the propulsor. This is obviously suitable for

(a) vortices near the body at the aft end (small body vortices, intersection vortices), and (b)

the nonacoustic stealth problem but can bc extremely adverse from an acoustic point of view

(e.g., ref. 176). Use of a shrouded "pump jet" propulsor which mitigates this acoustic problem

significantly enhances the overall merit of the "vortex eating propulsor" as a viable vortex control

technique. A free-wheeling device ahead of the main propulsor to correct maldistributions in

propulsor in-flow might also be efficacious (e.g., ref. 177). A somewhat related approach, which

is perhaps suitable for smaller vortical zones is to simply place the cooling water intakes such

as to ingest the fluid continuing the vorticity into the interior of the ship.

The prime "off-board" but stillnear fieldvortex control technique is to consider the

variousvortexfieldsproduced by the body in-totoand utilizethem to either(a)unwind/counter,

(b) diffuse/dissipate,or (c)steereach other to accomplish the desiredresult(improved control

function,improved stealth,etc.).This method is made difficultby the variabilityof vehicle

attitude,etc.,and resultingalterationin vortexlociwithinthe flow field.Additionaland various

"controlvortices"can bc generated (viavanes or jets)to account for thisvariabilityin vortex

system configuration.Also, some vorticesmove lessthan others and thereforemay be more

amenable to such "off-board"control.

References 6 and 176, 179 provide the fundamental theoretical framework for vortex control

18



via vortexDvortex interaction and include first-order maps of multiple vortex behavior as a

function of proximity and circulation ratio, e.g., whether "two vortex" sets will tend to merge

or separate. Sources of "control vortices" can include loaded part span flaps (e.g., refs. 6,

180, the "in-board" vortex, being of opposite sign to the "tip vortices" can be of especial

effectiveness in this regard (refs. 181, see also 179)). From reference 181, the flap vortex

should be approximately the same strength as the tip vortex. Control vortices can obviously

also be generated by devices specifically added for that purpose such as "fins" (essentially large

"vortex generators" refs. 182, 183) or various other of the innately-generated body or appendage

vortices. References 184 to 190 document experimental and theoretical studies of "off-board"

vortex interactions, including viscous effects.

As stated previously, the mechanisms by which "control" vortices can be utilized to alter

organized submersible vorticity are manifold and include: (1) "unwinding" or partial "destruc-

tion" via "negative" vorticity generated by a root/opposite "tip," side of body (in lifting case)

or control vortex production device, (2) "diffusion" of the vorticity across a broader region by

reorganization and turbulence, induced generally by vortices of the same sign, (3) instability

excitation (e.g., refs. 191-196), and (4) "simple" steering of the main vortex away from critical

portions of the body or away from the free surface (air-water interface).

8.0 INTERACTION OF BODY VORTICES WITH THE STERN PLANES AND RUDDER

In the world of aircraft design, it is well known that, although one does one's best to keep

the tail of the airplane away from the vorticity shed by the lifting wing, the static and dynamic

stability of the aircraft is greatly effected by the "downwash" of the wing. In the submarine
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world the stem planes cannot be taken out of the "downwash" of the hull, so they must operate

in a very strong field of trailing vorticity. Matters are made a great deal worse by the fact that the

shedding of trailing vorticity by a hull even at small angles of attack (_<10°) is very complicated.

At small angles of attack, a submarine hull may have a net upward lift but this upward lift is the

result of the bow section of the submarine lifting up somewhat more than the stem section lifts

down. This can result, when the vorticity separates from the hull, in a very complex interaction

as the trailing vorticity approaches the stem planes. Add to this the interaction of other vorticity

that may come from the tip and root of the sail, as well as any bow or fairwater planes that may

be generating forces, and one poses for oneself a very complicated nonlinear control problem

(see for example, ref. 197, 198). At the present time, designers are attempting to sort these

interactions out on existing shapes and designs. However, the authors believe that some of the

undesirable features of the existing interactions might be mitigated by the use of pairs of small

controls that produce equal and opposite forces (no net force) and whose equal and opposite

trading vorticity could greatly improve, through their nonlinear interaction with a given wailing

vortex system, the control effectiveness of the stem appendages of a submarine.

9.0 CONCLUDING REMARKS

VORTEX CONTROL TECHNIQUES POSSIBLY APPLICABLE TO SUBMARINES

Fundamental vorticity control approaches include (a) minimization of initial vorticity pro-

duction, primarily by mitigating transverse pressure gradients on the body (during maneu-

ver/cruise in the inhomogencous water column), and in appendage intersection and tip regions,

(b) production/utilization of "counter vorticity" (vorticity with the opposite sign) to annihilate

vorticity either as it is produced or downstream, (c) spread/diffuse the vorticity over a larger
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area via control vortices, turbulence or excitation of instabilities, and (d) utilization of control

vortices to "steer' the flow and therefore delay encounters with other vehicle elements and/or

the air water interface.

Specific design features which the present authors believe would be efficacious and conducive

to vortex minimization and mitigation include (NOTE: application a function of particular

platform design details.):

1. continuous surface curvature (continuous 2nd derivatives) to minimize transverse pressure

gradients

o minimization of (a) appendage size and pressure loading and (b) vehicle and control surface

motions

o elevated (above the inner part of body boundary layer) and active (perhaps even ring wing)

control surfaces to minimize body and control surface loading and motions

4. retractable/folding/deployable appendages

t thrust vectoring (,perhaps via use of segmented circulation control on stators for pump-jet

propulsor configurations)

6. free-wheeling device ahead of propulsor to minimize inflow distortion/vortex influence

o use of fillets, diUets, sweep, and leading-edge minimization on appendages to reduce

transverse pressure gradients/'mtersection vortex production/drag
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,

o

tip blowing, perhaps using cooling water which must be vented overboard (unless this

enhances IR scarring) to dissipate tip vortices

use of inboard secondary vorticity to control tip vortices, especially on horizontal control

surfaces to reduce vortex rise

10. counter-rotating propellers

11. active (feedback) distributed body vorticity control systems.

For a new platform design all of the techniques discussed herein, along with various

combinations (e.g., ref. 181, combination of turbulence enhancement and vortex merging for

tip vortices) should be at least considered in the preliminary design stage.
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